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1 Introduction
The tight tolerances on beam parameters required for successful LHC operation implies

a good knowledge of the chromaticity throughout the cycle. However, many of the methods
currently used to measure chromaticity in circular machines (see [1] and references therein)
are likely to be incompatible with LHC high intensity running. For example, the most common
method, of measuring the betatron tune as a function of beam energy, might be difficult to
implement due to the tight tolerances imposed on the betatron tune, and on the beam energy
variations the LHC will accept. Chromaticity can also be calculated from the amplitude of the
synchrotron sidebands observed in the transverse frequency spectrum. However, this method
suffers from resonant behaviour not linked to chromaticity and the fact that the low synchrotron
tune of the LHC would make it difficult to distinguish these sidebands from the main betatron
tune peak. The width of the betatron tune peak itself, or the phase response of the beam transfer
function also gives a measure of chromaticity, but requires a knowledge of how the momentum
spread in the beam will changes during the ramp of the LHC.
The determination of chromaticity by following the evolution of head-tail phase shifts after a
transverse dipole excitation is a technique which does not rely on an accurate knowledge of the
fractional part of the betatron tune and, for a machine operating well above transition, is virtually
independent of beam energy. Early experiments in the CERN-SPS [2] and at HERA-p (DESY)
[3] have shown the feasibility of the technique for high-energy proton beams. More recent
experiments [4] have highlighted several questions concerning the use of this technique for
accurate chromaticity determination. The most important of these concerned a constant factor
that appeared between the calculation of chromaticity via traditional techniques and that which
was calculated from head-tail phase shift measurements.
This paper compares the results of tracking studies with the simple two-particle model on which
the original head-tail theory was based in an attempt to explain the missing constant factor
(Section 2). The outcome of these results indirectly led to the source of the missing factor,
which was ultimately found to lie with the experimental method rather than the theory, and is
explained in detail (Section 3). This being said, theory and experiment will be compared in
Section 4 to analyse in particular the consequences of the RF bucket deformation due to the
acceleration in the SPS. Finally, detailed simulations performed for the LHC will be presented
in Sections 5 and 6 to study the robustness of the head-tail chromaticity measurement technique
in the presence of other possible sources of perturbation such as non-linear chromaticity (Q′′

and Q′′′), linear betatron coupling and transverse impedance.

2 The Head-Tail Principle and its simulation
In Ref. [2], a two-particle model was used to give an analytical estimate of the evolution

of the betatron phase shift between the head and the tail of a kicked beam due to a non-zero
chromaticity. Neglecting the non-linearity of the synchrotron motion, this result can be easily
extended to the case of an arbitrary longitudinal bunch distribution (Sub-section 2.1). To deal
with the general case, a multi-particle tracking program was written in order to depict correctly
the synchrotron motion (with or without acceleration) and to include other perturbations such as
dispersion, off-momentum beta-beating and non-linear chromaticity (as Q′′ or Q′′′). After a de-
tailed description of this program (Paragraph 2.2.1), tracking results and analytical estimates are
compared in the case of a stationary bucket and a purely linear chromaticity (Paragraph 2.2.2).
The case of an accelerating bucket will be treated in detail in Section 4, and the influence of the
non-linear chromaticity studied in Section 5.
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2.1 Multi-particle dynamics and an analytical estimate in the linear optics
approximation
Assuming longitudinal stability and neglecting the non-linearities of the synchrotron mo-

tion, a single particle will rotate in longitudinal phase space at a frequency equal to the syn-
chrotron frequency: 


z(s; r, φs) = r cos (2πQs s/C + φs)

δ(s; r, φs) = −2πQs

η C
r sin (2πQs s/C + φs) .

(1)

Here C is the ring circumference, s the curvilinear abscissa around the ring,Qs the synchrotron
tune and η = 1/γ2 − α2 the slippage factor (with α the momentum compaction); z denotes the
relative longitudinal coordinate within the bunch defined by z = 0 for the synchronous particle
and z > 0 at the bunch head, δ is the relative momentum deviation. The quantities r and φs

parametrise the initial conditions of the particle considered.
After a transverse kick the particle also undergoes transverse motion which, turn after turn, can
be described by

y(n; r, φs) = A sin (2nπQ+ θ(n; r, φs)) , (2)

with A a constant, n the turn number after the kick, Q the betatron tune and θ(n; r, φs) a phase
shift which, assuming a purely linear chromaticity (i.e. Q′′ = Q′′′ = . . . = 0), is given by

θ(n; r, φs) =
2π

C

∫ nC

0

dsQ′ × δ(s; r, φs) =
2πQ′

η C


r cos (2nπQs + φs)︸ ︷︷ ︸

= z(nC; r,φs)

− r cos (φs)︸ ︷︷ ︸
= z(0; r,φs)


 . (3)

This phase-shift can then be expressed as a function of the actual position
(
τ

def
= z/c , δ

)
of the

particle in longitudinal phase space. Indeed, using Eq. (1), we have

r cos (φs) = r cos (2nπQs + φs − 2nπQs) = z cos (2nπQs) − η C

2πQs

δ sin (2nπQs) , (4)

leading to

θ(n; r, φs) ≡ θ(n; τ, δ) =
ω0Q

′

η
(1− cos(2nπQs)) × τ +

Q′

Qs
sin(2nπQs) × δ , (5)

with ω0 = 2πc/C the angular revolution frequency. Finally, by combining this relation with
Eq. (2), one gets

y (n; r, φs) ≡ y(n; τ, δ)=A sin
[
2nπQ+

ω0Q
′

η
τ (1−cos(2nπQs)) +

Q′

Qs

δ sin(2nπQs)
]

= A cos
(
Q′/Qs δ sin(2nπQs)

)
sin

[
2nπQ +

ω0 Q′

η
τ (1−cos(2nπQs))

]
+

A sin
(
Q′/Qs δ sin(2nπQs)

)
cos

[
2nπQ +

ω0 Q′

η
τ (1−cos(2nπQs))

]
.

(6)
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At turn n, the transverse excursion 〈y〉 (τ̂ ;n) of the slice ẑ def
= cτ̂ can then be easily obtained by

multiplying the previous relation by the actual longitudinal distribution ρ(τ̂ , δ;n) of the bunch,
integrating over δ and normalising the result obtained in the following way:

〈y〉 (τ̂ ;n) = A (τ̂ ;n) sin (2nπQ+ φβ (τ̂ ;n)) +B (τ̂ ;n) cos (2nπQ+ φβ (τ̂ ;n))

with




A (τ̂ ;n) = A

∫
dδ ρ (τ̂ , δ;n) cos (Q′/Qs δ sin(2nπQs)) /

∫
dδ ρ (τ̂ , δ;n)

B (τ̂ ;n) = A

∫
dδ ρ (τ̂ , δ;n) sin (Q′/Qs δ sin(2nπQs)) /

∫
dδ ρ (τ̂ , δ;n)

φβ (τ̂ ;n) =
ω0Q

′

η
τ̂ (1 − cos(2nπQs)) .

(7)

After the RF capture, the distribution ρ (τ, δ;n) becomes independent of n (assuming no co-
herent longitudinal oscillation) and is an even function of δ. As a result, the cosine-amplitude
occurring in Eq. (7) (coefficient B) vanishes.
Concerning the head-tail phase shift, Eq. (7) reproduces exactly the analytical estimate derived
in Ref. [2] and obtained with a simple two-particle model. If we consider the evolution of two
longitudinal positions within a single bunch separated in time by ∆τ , then the phase difference
in the transverse oscillation of these two slices is given by

∆φβ(∆τ ;n) =
ω0Q

′

η
∆τ (1 − cos(2nπQs)) . (8)

This phase difference is a maximum when nQs = 1/2 (i.e. after half a synchrotron period) and
is directly related to the chromaticity:

∆φmax
β (∆τ) = 2∆τ

ω0Q
′

η
or Q′ =

η∆φmax
β (∆τ)

2ω0 ∆τ
. (9)

On the other hand, Eq. (7) contains additional information related to the decoherence of the
signal observed. For instance, for a Gaussian bunch, the distribution ρ(τ, δ) is given by

ρ(τ, δ) =
1

2π στ σδ
exp

(
− τ 2

2σ2
τ

)
exp

(
− δ2

2σ2
δ

)
with σδ =

ω0Qs

|η| στ , (10)

and the sine-amplitude A (τ̂ ;n) occurring in Eq. (7) is given by

A (τ̂ ;n) = A exp

[
−
(
ω0Q

′

η
στ sin(2nπQs)

)2

/2

]
, (11)

which is independent of τ̂ in this particular case. Therefore, in the presence of a non-zero chro-
maticity, the signal envelope decoheres and recoheres every half synchrotron period.

2.2 Influence of synchrotron non-linearities
Including the non-linearities of the RF potential in our analytical treatment would require

the use of elliptic functions, which has been found extremely difficult, if not impossible in
the case of an accelerating bucket. Therefore a beam simulator has been written where the
interactions between the beam and the head-tail monitor is correctly depicted at just the right
level of complexity, i.e. containing an exact description of the synchrotron motion and including
all the possible chromatic aberrations in the one-turn transverse map. The main features of this
simulator are described below. The results obtained in the case of a stationary SPS bucket and a
purely linear chromaticity are shown in paragraph 2.2.2 and compared to the analytical estimate
given in Eq. (8).
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Parameter Symbol Units Value

Ring Circumference C m 6906.765
Harmonic number h [1] 4620 (200 MHz)
Momentum compaction α [10−3] 1.8539
Energy Es [GeV] 265.000 303.910

Relativistic factor γ [1] 282.434 323.904
Slippage factor η [10−3] −1.8413 −1.8443
Peak RF Voltage VRF [MV] 4.021 3.869
Synchronous RF phase φs [◦] 26.60 27.72
Synchronous RF voltage VRF sin(φs) [MV] 1.8 1.8
Synchrotron tune (at zero
synchrotron amplitude)

Qs [turns] 233 256

Bucket half-height δmax [10−3] 0.67 0.60
Bucket head w.r.t. φs τmax [ns] 1.76 1.73
Bucket tail w.r.t. φs τmin [ns] −1.03 −1.00

Table 1: Parameters relevant to the SPS RF system, RF voltage, synchronous phase and bucket
description for 2 different energies (voltage programme in Spring 2001, courtesy of L. Nor-
mann).

2.2.1 Description of tracking parameters
One-turn map.

In the four dimensional phase space (y, y ′, z, δ), the one-turn map is obtained via the concate-
nation of the two following transformations:

a) the transport across the RF system described by

Y def
=



y
y′

z = c∆t
δ = ∆E/Esi


 ❀



y
Esi
/Esf

y′

z
Esi
/Esf

δ + eVRF/Esf
[sin(φs + 2πhz/C) − sin(φs)]


 .

(12)

Here e denotes the electric charge of the particle, h is the harmonic number, C the ring cir-
cumference, VRF the peak RF voltage, Esi

and Esf
≡ Esi

+ eVRF sin(φs) the initial and final
energy of the synchronous particle with VRF sin(φs) representing the synchronous accelerating
voltage. Note that with the convention chosen for the z coordinate, z > 0 at the bunch head,
the stability of the synchrotron motion implies |φs| < π/2. The basic parameters relevant to the
SPS RF system are listed in Table 1 at the energies of 265 GeV and 303.91 GeV, where most of
the beam measurements were performed.

b) the transport around the ring described by the following δ-dependent 4 × 4 symplectic
R−matrix:

R(δ) =



R11 R12 0 R16

R21 R22 0 R26

R51 R52 1 R56

0 0 0 1


 , (13)
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with



R11 =cos(2πQx) + αx sin(2πQx)
R12 =βx sin(2πQx)
R21 =−γx sin(2πQx)
R22 =cos(2πQx) − αx sin(2πQx)

,




R16 = Dx (1 − R11) −D′
xR12

R26 = D′
x (1 − R22) −DxR21

R51 = D′
x (1 −R11) +DxR21

R52 =−Dx (1 − R22) −D′
xR12

R56 = η C −DxR51 −D′
xR52

,

and



βx(δ) =β

(0)
x + β

(1)
x δ + . . .

αx(δ) =α
(0)
x + α

(1)
x δ + . . .

γx(δ) = (1 + α2
x)/βx

Qx(δ)=Qx +Q′
xδ +Q′′

xδ
2 + . . . .

(14)

Here η represents the slippage factor, αx, βx, γx, DxD
′
x the horizontal or vertical Twiss param-

eters, dispersion and angular dispersion at the location of the RF cavity, and Qx is the betatron
tune. Assuming reasonable transverse kicks of the order of one r.m.s. beam size σ, an off-
momentum beta-beating as large as 20% over the bunch energy distribution (i.e. twice more
than is expected for the squeezed optics of the LHC [5, p. 4]) and a dispersion function going
from a few centimetres up to 1 m, the perturbation induced on the head-tail phase shift is almost
invisible in the simulations. This aspect will therefore be omitted in all the rest of the paper.
The discussion concerning the contribution of the non-linear chromaticity Q ′′ and/or Q′′′ will
be treated in Section 5.

Invariant of the synchrotron motion.
For an appropriate choice of initial distribution for the bunch in longitudinal phase-space, we
start by extracting a prime integral for the synchrotron motion from the transformations (12)
and (13). Under the approximation of an adiabatic acceleration, i.e. eVRF sin(φs)/Es � 1 and
neglecting the synchro-betatron coupling due to the dispersion, the change of synchrotron co-
ordinates from turn to turn is given by


∆z ≈ C

dz

ds
= η C δ

∆δ ≈ C
dδ

ds
=

eVRF

Es

(
sin(φs + 2πhz/C) − sin(φs)

) (15)

As a result, the quantity

g(z, δ)
def
=

(
δ

δmax

)2

+
V (2πhz/C)

V (π − 2φs)
(16)

is a constant of motion (normalised Hamiltonian), with

V (φ)
def
=

1

2
(cos(φs) − cos(φ+ φs) − φ sin(φs)) and δmax =

√
2eVRF

πhEs |η| V (π − 2φs) (17)

the bucket half-height; the condition for RF capture is then given by

g(z, δ) ≤ 1 . (18)

Initial distribution in longitudinal phase space.
In order to warrant the turn-by-turn conservation of the distribution ρ(z, δ), the latter must be a
function of g and thus conforms to the contours of the normalised Hamiltonian (16) inside the
bucket. A set of possible stationary beam distributions is obtained by writing

ρ(z, δ) ∝ Θ
[
q2p − g(z, δ)

]× [
q2p − g(z, δ)

]µ
, (19)
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(a): Stationary SPS bucket (b): Accelerating SPS bucket
at 303.91 GeV (VRF = 3.87 MV, φs = 0) at 303.91 GeV (VRF = 3.87 MV, φs = 27.7◦)

(c) (d)

Figure 1: Longitudinal phase space of a stationary and accelerating SPS bucket at 303.91 GeV
(Fig. (a) and (b)) and corresponding bunch charge distribution (Fig. (c) and (d)) tracked over
400 turns, assuming a bucket filling factor qp of 95% and µ = 0.5 in Eq. (19).
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with 0 < qp ≤ 1 the filling factor in momentum of the bucket, Θ the Heaviside step func-
tion and µ > −1 an adjustable parameter quantifying the sharpness of the distribution. As an
example, for φs = 0 (no acceleration), qp = 1 (100% of the bucket filled) and µ = 1/2, the cor-
responding longitudinal distribution ρ(z) is the so-called “cosine-squared” or “quasi-parabolic”
distribution:

g(z, δ) =

(
δ

δmax

)2

+ sin2

(
πhz

C

)
⇒ ρ(z) ≡

∫
dδ ρ(z, δ)∫∫
dδ dz ρ(z, δ)

=
2h

C
cos2

(
πhz

C

)
for |z|≤ C

2h
,

(20)

which is similar to a parabolic-like distribution but has the advantage that the derivatives at the
bucket edge are continuous.
After simulation for the SPS assuming a filling factor of 95% [6], the results obtained are, to a
large extent, independent of the parameter µ (for µ between zero and one). In all the rest of the
paper, we will therefore assume qp = 0.95 and µ = 1/2, that is

ρ(z, δ) ∝ Θ
[
0.952 − g(z, δ)]√(0.952 − g(z, δ) , (21)

with g(z, δ) given in Eq. (16). The corresponding bunch charge distribution (obtained by track-
ing) is shown turn after turn in Fig. 1 both for a stationary and an accelerating SPS bucket at the
energy of 303.91 GeV (VRF and φs given in Table 1).
Tracking procedure and post-processing.
At turn n = 0, the longitudinal plan is uniformly criss-crossed by macro-particles (typically
from 5×105 to 106 particles to avoid statistical fluctuation effects) with initial conditions (z0, δ0)
satisfying Eq. (18), and (x0 =0, x′0=A) where A is the amplitude of the applied kick. Each par-
ticle is initially labelled with a weight proportional to the distribution ρ(z, δ) given in Eq. (21),
then tracked using the 4D one-turn map previously described. At each turn n, the bunch is split
longitudinally into a fixed number of slices (typically from 100 to 200 slices) and the average
transverse position y(τ ;n) of each slice is computed (with τ the time delay with respect to the
central slice τ = 0). The results obtained are then post-processed using Hilbert transform tech-
niques (see e.g. [7]) to obtain both the betatron tune Q, the signal envelopes A(τ ;n) and the
betatron phase shifts φβ(τ ;n) defining the transverse motion of each considered slice:

〈y〉 (τ ;n) = A(τ ;n) sin (2nπQ+ φβ(τ ;n)) . (22)

2.2.2 Results of multi-particle tracking simulations for a stationary bucket
The results obtained for a stationary SPS bucket at 265 GeV are shown in Fig. 2, assum-

ing a purely linear chromaticity Q′ of 5.1 units (i.e. ξ = Q′/Q = 0.192 in SPS units). Here we
have considered two slices of charge located at the bunch head and corresponding to τ = 0.5 ns
and τ = 1.0 ns. The betatron phase shift is given with respect to the betatron phase measured at
the bunch centre (slice τ = 0).
Contrary to the simplified case treated in Sub-section 2.1 (see Eq. (11)), the signal envelope
does not recohere completely after each synchrotron half-period (see Fig.’s 2(c) and 2(d)).
For the slice τ = 0.5 ns, the head-tail phase shift obtained by simulation fits almost perfectly
over the first synchrotron half-period (∼ 110−120 turns) with the analytical estimate derived in
Sub-section 2.1 (see Eq. (8)). On the other hand, the perturbation induced by the non-linearity
of the synchrotron motion is more significant when observing the slice τ = 1.0 ns. However,
in both cases, the main effect is a reduced modulation frequency for the head-tail phase shift
(Qs goes to zero for particles with large synchrotron amplitudes); within a few percent, the
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(a): Signal observed at τ =0.5 ns (b): Signal observed at τ =1.0 ns
w.r.t. the bunch centre w.r.t. the bunch centre

(c): Signal envelope [mm] (d): Signal envelope [mm]

(e): Betatron phase-shift [rad] (f): Betatron phase-shift [rad]

Figure 2: SPS stationary bucket at 265 GeV. Linear chromaticity of 5.1 units. Tracking over
400 turns following the kick: signal 〈y〉 (τ ;n) (see Eq. (22)) as a function of n observed at the
bunch head with a time delay of τ = 0.5 ns and τ = 1 ns with respect to the bunch centre
(Fig.’s (a) and (b)), corresponding signal envelope A(τ ;n) (Fig.’s (c) and (d)) and betatron
phase-shifts φβ(τ ;n) (Fig.’s (e) and (f)), and comparison with the analytical estimate given in
Eq. (8) (dashed curve).
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peak value φmax
β attained after the first synchrotron half-period is never affected. A qualitative

explanation of this result will be given in Sub-section 4.2 when dealing with the case of an
accelerating bucket.
The perturbations induced by the non-linearities of the synchrotron motion are even more evi-
dent in Fig. 3, where the head-tail phase shift due to Q′ is shown as a function of τ for the first
341 turns after the kick. The dependence on τ of the function φmax

β (τ) is clearly linear; there-
fore Eq. (9) can be applied “blindly” for a very accurate estimate ofQ′ in the following 2 cases:
either one of the two slices chosen for the measurement corresponds to the centre of the bucket,
or the two slices which are used are symmetrically positioned with respect to the bucket centre.
On the other hand, in the case of an accelerating bucket, only the second option can be retained,
the first one leading to an over or under-estimate of Q′ (by 10-20%) depending on whether the
measurement is made at the tail or head of the bunch respectively (see Section 4).

Turn #171

Turn # 1

Turn #171

Turn #341

Figure 3: SPS stationary bucket at 265 GeV. Linear chromaticity of 5.1 units. Betatron phase
shift φβ(τ ;n) as a function of τ (see Eq. (22)) tracked over 341 turns after the kick.
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3 Explanation and correction of the “Missing Factor” found between Head-Tail and
conventional chromaticity measurements

Figure 4: A comparison of head-tail and radial steering chromaticity measured at 303.91 GeV
on the CERN-SPS and given in SPS unit (ξ = Q′/Q = 0.0376 × Q′). The head and tail slices
are positioned symmetrically around the bunch centre and separated by ∆τ = 1 ns. The dotted
line shows the trend of the head-tail data when corrected by a factor of 1.4.

The head-tail monitor has been operational in the SPS for the last 2 years. A complete de-
scription of the detection and acquisition system can be found in [4]. All the results to date have
shown discrepancies between the value of chromaticity measured via head-tail phase shifts and
the traditional technique of tune tracking during energy modulation (referred to in the SPS as
radial steering chromaticity measurements). A typical plot from such a comparison performed
at the SPS is shown in Fig. 4, where the measured chromaticity obtained via both the head-
tail and radial steering techniques is plot against the sextupole trim. The head-tail data is taken
from slices that are symmetrically positioned around the centre of the bunch and separated by
∆τ = 1 ns. It can be seen that the head-tail results are consistently lower than the actual value,
requiring a correction factor of 1.4, which remains essentially constant with chromaticity. The
dotted line shows the trend of the head-tail measurements when corrected for this error, which
is now seen to be in very good agreement with that measured using energy modulation.
In order to understand the origin of this correction factor, a more detailed study of both the
underlying physics of the head-tail phase shift and the acquisition hardware associated with
the head-tail monitor was initiated, and is the basis of this paper. From Section 2 it is possi-
ble to conclude that for symmetrically positioned head and tail slices there is very little error
introduced when considering the two-particle model as opposed to a multi-particle model in-
cluding non-linearities in the synchrotron motion. This will also be shown to be the case for
an accelerating bucket (see Section 4) where further bunch deformations are introduced. With
this knowledge, the original simplification in the description of the head-tail phase shift using
a simple two-particle model could be excluded as the source of the missing factor. The expla-
nation for this factor was therefore probably associated with the head-tail monitor acquisition
chain, and in particular with the effects of bandwidth limitations within the system. A schematic
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Figure 5: Schematic layout of the head-tail monitor in the CERN-SPS showing the various
bandwidth limitations.

layout of the system showing the various bandwidth limitations is shown in Fig. 5.
The main analogue bandwidth limitation within the system comes from the 170 m long cables

connecting the hybrid in the SPS tunnel with the acquisition electronics. In addition, the 2 GS/s
sampling rate of the oscilloscope reduces the upper frequencies that can be resolved without
aliasing after digitisation to around 500 MHz. To see the effect that such bandwidth limitations
have on the head-tail measurements, simulations were performed using the turn-by-turn track-
ing data produced by the beam simulator described in Section 2. The bunch was split into 100
slices to produce both the sum signal (intensity of each slice) and delta signal (position of each
slice) for each turn over one synchrotron period. This data was then passed through a PSpice
simulation of the coupler and cable (courtesy of D. Cocq) to give a final result that could be
interpreted by the head-tail acquisition software. PSpice output files were produced with both
500 ps and 125 ps time intervals between samples, corresponding to 2 GS/s and 8 GS/s sam-
pling rates respectively.
The cable simulation was performed on 3 sets of input data with chromaticities of 1.7, 3.4 and
5.1 units. The resulting output files were passed through the head-tail analysis program. In each
case the measured chromaticity was found to be lower than the known chromaticity of the orig-
inal simulation, requiring a correction factor of ∼ 1.3. This was close to the factor of 1.4 found
in the real SPS data, and pointed to the cable bandwidth limitations as the main reason for the
“missing factor”. A simulated delta signal where the head and tail are oscillating out of phase
is shown in Fig. 6(a). Also plotted is the resulting signal after having passed through the cou-
pler and cable for both 2 GS/s and 8 GS/s digitisation rates. The effect of the limitations in the
bandwidth is clearly shown as an elongation of the original signal (the second, inverted pulse
comes from the reflection due to the coupler pick-up).
On the basis of this evidence a deconvolution routine was added to the head-tail analysis pro-

gram (courtesy of N. Catalan-Lasheras) to take into account the attenuation and phase varia-
tions due to the cable. Fig. 6(b) shows the result of deconvolving the output signals shown in
Fig. 6(a) with the known simulated cable response. For a sufficiently high sampling rate (8 GS/s
in this case) it can be seen that the original signal is perfectly reproduced, as would be expected.
The effect of this deconvolution and the sampling rate on the measured value of the head-tail
chromaticity is summarised in Table 2. It can be seen that the correction factor is significantly
reduced by a deconvolution after 2 GS/s digitisation, and eliminated by a deconvolution after
8 GS/s digitisation.

11



Fig. (a)

Fig. (b)

Figure 6: The effect of cable bandwidth and sampling rate on an input delta signal (Fig. (a))
and the result of deconvolving the output signal with a known cable response for two different
sampling rates (Fig. (b)).
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Required head-tail correction factor

Chromaticity No deconvolution
Deconvolution

(2 GS/s)
Deconvolution

(8 GS/s)

1.7 1.31 1.03 1.00
3.4 1.30 1.03 1.00
5.1 1.29 1.03 1.00

Average 1.30 1.03 1.00

Table 2: The effect of deconvolution (with the simulated cable response) on the head-tail correc-
tion factor obtained using simulated data for different values of chromaticity and for different
sampling rates.

In order to apply such deconvolution to the measured SPS data the real cable response (am-
plitude and phase) was required. This was measured in-situ using a network analyser for all
frequencies up to 4 GHz (see Fig. 7). Fig. 8 shows the effect of correcting this cable response
on the measured value of head-tail chromaticity. In agreement with the simulations, applying
this deconvolution significantly reduces the correction factor. A further small correction is ob-
tained if the analogue bandwidth of the oscilloscope is also taken into account, reducing the
required correction factor from ∼ 1.4 to 1.07-1.11 for chromaticities from 8 to 14 units. For
higher chromaticities the effect of deconvolving the 2GS/s digitised data is less pronounced.
This is possibly due to the increase in the higher frequency components of the original delta
signal which cannot be detected due to the limited sampling rate. The large error bars in the
original correction factors come directly from the uncertainty in the measurement of chromatic-
ity via radial steering, with which the head-tail measurements are compared.

Figure 7: Amplitude and phase response of the 170 m long Flexwell 7/8” cables installed in the
SPS between the head-tail monitor pick-up and the acquisition electronics.
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Figure 8: The effect of deconvolution (with the measured cable response) on the head-tail cor-
rection factor obtained using measured SPS data for different values of chromaticity.

In all probability the acquisition is now limited by the 2 GS/s sampling rate of the os-
cilloscope, which effectively reduces the overall bandwidth of the system to around 500 MHz.
From the simulations it can be seen that any further improvements to the acquisition chain will
therefore require the installation of an oscilloscope capable of sampling at around 8 GS/s.

4 Effect of bunch deformation due to acceleration
When accelerated, the bucket is no longer symmetrical with respect to the point (z=0,

δ = 0) in longitudinal phase space (see Fig. 1(b)) and, contrary to the case of the stationary
bucket treated in Paragraph 2.2.2, the measurement method must be carefully defined.
Results of simulations are shown in the next sub-section for an accelerating SPS bucket at
303.91 GeV. A qualitative explanation of the results obtained follows in Sub-section 4.2, and
the experimental verification of the theory will be presented in Sub-section 4.3.

4.1 Results of tracking
The results of tracking obtained for an accelerating SPS bucket at 303.91 GeV are shown

in Fig. 9, assuming the RF parameters given in Table 1 and a purely linear chromaticity of 5.1
units (as in Paragraph 2.2.2). Here we have considered the following three cases:

– case 1. The two slices used to compute the head-tail phase shift are located at τ = ±0.5 ns
with respect to the synchronous particle.

– case 2. One of the two slices coincides with the bunch centre and the other one corre-
sponds to τ = 0.9 ns (to be compared with τmax = 1.73 ns in Table 1).

– case 3. One of the two slices coincides with the bunch centre and the other one corre-
sponds to τ = −0.9 ns (to be compared with τmin = −1.00 ns in Table 1).

In the first case (see Fig. 9(a)), analytical estimate (dashed curve) and simulation results (solid
line) fit extremely well. As in Paragraph 2.2.2, the only difference lies in a reduction of the
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−→ Betatron phase shift between the
slices τ = 0.5 ns and τ = −0.5 ns.

−→ Betatron phase shift between the
slices τ = 0.0 ns and τ = 0.9 ns.

−→ Betatron phase shift between the
slices τ = −0.9 ns and τ = 0.0 ns.

Figure 9: SPS accelerating bucket at 303.91 GeV. Linear chromaticity of 5.1 units. Head-tail
phase shift obtained by simulation (solid lines) and comparison with the analytical estimate
given in Eq. (8) (dashed curve) for the 3 cases considered in Sub-section 4.1.
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modulation frequency of the head-tail phase shift due to the non-linearities of the synchrotron
motion. The peak value ∆φmax

β attained after the first synchrotron half-period is not affected.
As shown in Fig. 9(b), the measurement technique relative to Case number 2 leads to an under-
estimate of the chromaticity by some 10%. Conversely the chromaticity can be over-estimated
by more than 15% if the measurement is made at the bunch tail and the phase shift computed
with respect to the betatron phase of the bunch centre (Case 3). Note also in Fig. 9(c) the
significant reduction of the synchrotron frequency when the measurement is made in the vicinity
of the tail of the RF bucket.

4.2 Using the two-particle model for a qualitative explanation
As said previously, a fully analytical treatment of the problem has been found extremely

difficult, if not impossible in the case of an accelerating bucket. However, as it is often the
case, the two-particle model can still be used to give a first estimate of the perturbation induced
by acceleration. For this purpose let us consider a single particle with the initial conditions

(z(0)
def
= cτ0, δ(0) = 0) in longitudinal phase space just before the kick. At time t = s/C after

the kick, the betatron phase-shift of this particle (w.r.t. the betatron phase of the synchronous
particle) is given by

∆φβ(s) =
2πQ′

C

∫ s

0

ds′ δ(s′) , (23)

using the notation introduced in Sub-section 2.1. On the other hand, the longitudinal excursion

z(s)
def
= cτ(s) of the particle satisfies

dz

ds
= c

dτ

ds
= η δ(s) . (24)

As a result, Eq. (23) can also be written as

∆φβ(s) =
Q′ ω0

η

(
τ(s) − τ0

)
, (25)

which is equivalent to Eq. (3).
To continue the discussion, let us come back to the longitudinal potential V (φ) given in Eq. (17)
and let us introduce the functions φ±(v) defined for the interval [0, V (π − 2φs)] and satisfying
(see Fig. 10)

φ+(v) ≥ 0 , φ−(v) ≤ 0 and V
[
φ±(v)

]
= v , 0 ≤ v ≤ V (π − 2φs) , (26)

giving φ±
[
V (φ)

]
= φ for φ ≷ 0 . (27)

Taking the example of a stationary bucket (φs = 0), one has

V (φ) ≡ sin2(φ/2) ⇒ φ+(v) = −φ−(v) = 2 sin−1
(√
v
)
, 0 ≤ v ≤ 1 . (28)

Let us assume now that the measurements are taken with a time delay τ = τ̂ with respect to the
bunch centre (slice τ̂ ). Since the quantity

g(z, δ)
def
=

(
δ

δmax

)2

+
V (2πhz/C)

V (π − 2φs)
(29)
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Vmax = cos(φs + [φs- π/2 ]sin(φs ))

φmin = φ- (Vmax ) φmax = π-2 φs = φ+(Vmax )

Figure 10: Longitudinal potential V (φ) defined in Eq.’s (17) assuming a synchronous RF phase
of φs = 27.72◦.

is a constant of motion (see Paragraph 2.2.1), it follows from Eq. (25) that the particle arrives at
τ(s) = τ̂ with a maximum betatron phase shift if its initial condition τ0 satisfies

V (hω0 τ0) = V (hω0 τ̂) ⇒ τ0 =
1

hω0
φ∓

[
V (hω0 τ̂)

]
, whether τ̂ ≷ 0. (30)

In conclusion, depending on whether the measurement is made at the head (τ̂ > 0) or at the tail
(τ̂ < 0) of the RF bucket, by combining Eq.’s (25) and (30), we obtain

∆φmax
β (τ̂) = S(τ̂ )∆φmax,lin.

β (τ̂ ) with




∆φmax,lin.
β (τ̂ )= 2 τ̂

ω0Q
′

η

S(τ̂) =
τ̂ − φ∓[V (ωRFτ̂ )

]
/ωRF

2 τ̂
,

(31)

where ωRF/(2π) denotes the RF frequency. When φs = 0 (stationary bucket), it follows from
Eq.’s (27) and (28) that S(τ̂) = 1 and Eq. (31) gives an estimate of the head-tail phase shift
corresponding to Eq. (9).
The scaling factor S(τ) is shown in Fig. 11 as a function of τ for different values of the syn-
chronous phase φs and the 200 MHz RF frequency of the SPS. For τ > 0 (measurement taken
at the bunch head) this factor is smaller than unity, which means that Eq. (9), if blindly used,
will give an under-estimation of the actual chromaticity. The inverse is true if τ < 0. In fact,
from a purely qualitative point of view, this result is evident when looking at the longitudinal
phase-space topology of an accelerating bucket1) (see Fig 1(b)). For the RF bucket considered
in Sub-section 4.1 (φs = 27.72◦), we find S(τ) = 0.9 / 1.18 for τ = ±0.9 ns, respectively,
1) For a given synchrotron trajectory the ratios (zmax− zmin)/2/zmax and (zmin− zmax)/2/zmin are smaller and

larger than unity, respectively.
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Figure 11: Scaling factor S(τ) as defined in Eq. (31) for a 200 MHz RF system and different val-
ues of the synchronous phase φs. The bullets refers to Cases 2 and 3 defined in Sub-section 4.1,
i.e. τ = ±0.9 ns and φs = 27.72◦.
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Figure 12: Scaling factor Ssym(τ) as defined in Eq.’s (32) for a 200 MHz RF system and different
values of the synchronous phase φs. The bullet corresponds to τ = 0.5 ns and φs = 27.72◦.

which matches rather well with the simulation results previously obtained (see Fig.’s 9(b)-(c)).
In the case where the betatron phase shift is computed between two slices of charge positioned
in a symmetric way with respect to the bunch centre, Eq. (31) must be rewritten by redefining
the scaling factor S(τ) as

Ssym(τ) ≡ [
S(τ) + S(−τ)]/2 . (32)

For a time separation of 1 ns between the two slices (i.e. τ = ±0.5 ns), this factor remains very
close to unity (see Fig. 12), which is in agreement with the simulation results shown in Fig. 9(a).
Finally, note that this discussion becomes almost irrelevant for an ultra-slow cycling machine
such as the LHC where φs ≈ 4◦ / 2◦ for the maximum permissible ramp speed of 10 A/s (last
segment of the ramp) and a total RF voltage of VRF = 8 / 16 MV.

4.3 Comparison with experiments at the SPS
The effect of bunch deformation due to acceleration on the value of the head-tail chro-

maticity was investigated in the CERN-SPS during the “25 ns run” with LHC type beam in
October 2001. Measurements were performed both during the ramp (accelerating RF bucket)
and at high energy (stationary RF bucket) and compared with the simulations and calculations
presented in the previous sub-sections. The longitudinal distribution measured for both a sta-
tionary and accelerating SPS RF bucket is shown in Fig. 13. These are plotted after correction
by deconvolution for the cable between the pick-up and the acquisition electronics (see Sec-
tion 3) and can be compared to the simulations of Fig. 1. It should be noted that the stationary
bucket is reduced in size with respect to that illustrated in Fig. 1 due to the increased energy
(450 GeV) at which these measurements took place.
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Figure 13: The measured longitudinal bunch distribution after deconvolution for both a station-
ary and accelerating bucket in the CERN-SPS. The head of the bunch is plotted for positive τ .

The scaling factor S(τ), as defined in Eq. (31), was measured by comparing the value of the
chromaticity at a minimal, symmetric head-tail separation of 0.2 ns (τ = ±0.1 ns), with that
obtained for a range of asymmetric measurements (see Fig. 14). A positive τ indicates that the
measurement took place between the head and centre of the bunch (with the head at time τ
from the centre), while a negative τ represents a measurement between the centre and tail of the
bunch. In the case of the stationary bucket it can be seen that there is only a slight effect (5-10%)
on the value of chromaticity even when the head or tail reach the extreme edges of the distri-
bution, where the effects of non-linear synchrotron motion become important. However, for the
accelerating bucket there is a marked difference between measurements taken at the head of the
bunch and those taken at the tail. A comparison with the simulations of Fig. 11 show a good
agreement in the general trend of the scaling factor, with the measured factor being somewhat
larger than predicted.
The symmetric scaling factor Ssym(τ), as defined in Eq. (32), was measured by comparing the
value of the chromaticity at a minimal head-tail separation of 0.2 ns (τ = ±0.1 ns), with that
obtained at larger separations. In each case the head and tail were taken symmetrically about the
bunch centre. The results for both the stationary and accelerating bucket are shown in Fig. 15.
In the case of the stationary bucket it can be seen that there is little effect on the value of chro-
maticity until the head-tail separation reaches around 1.2 ns (τ = ±0.6 ns), in good agreement
with the φs = 0◦ plot in Fig. 12. Beyond this separation the measurement can overestimate the
chromaticity by ∼ 7% for (τ = ±0.75 ns). This should not occur for the symmetrical beam
distribution of the stationary bucket and is probably due to residual imperfections and noise
in the acquisition procedure described in Section 3. For the accelerating bucket the head-tail
separation at which the measured chromaticity begins to increase is reduced to around 0.6 ns
(τ = ±0.3 ns), and can be compared to the trend of the φs = 27◦ plot in Fig. 12. For a reason
which is not clearly understood, the overall scaling factor is found to be significantly larger than
that predicted by the simulations.
However, this does not influence the general conclusion of this section, which is that the head-
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Figure 15: Measured scaling factor Ssym(τ) (see Eq. (32)) as a function of the head and tail
position, which are placed symmetrically about the centre of the bunch (i.e. a time separation
of 1.0 ns between head and tail is represented by τ = 0.5 ns).
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tail chromaticity measurement is valid for both accelerating and stationary RF buckets as long as
the measurement takes place symmetrically about the bunch centre using relatively small head-
tail separations: in this case up to τ = ±0.3 ns for the SPS accelerating bucket and τ = ±0.6 ns
for the stationary SPS bucket at 450 GeV (and therefore also for the LHC bucket at injection
and/or at the beginning of the ramp).

5 Effect of chromatic aberrations
As mentioned in Paragraph 2.2.1, the chromaticity measurement using the head-tail tech-

nique is, to a large extent, insensitive to off-momentum β-beating and the presence of spurious
dispersion at the monitor. On the other hand, the non-linear chromaticity, if not well controlled
during machine operation, can give a non-negligible contribution to the head-tail phase-shift
and therefore may deteriorate the accuracy of the monitor. Neglecting the non-linearity of the
synchrotron motion and assuming a Gaussian bunch, the contribution of Q ′′ to the head-tail
phase-shift will be estimated analytically in Sub-section 5.1. Results of simulation and analyt-
ical estimates will be compared in Sub-section 5.2 in the case of the LHC. In addition, by
including the contribution of Q′′′, it will be shown that the accuracy of the head-tail monitor
should not be affected by the non-linear chromaticity expected in the LHC.

5.1 Perturbation induced by Q′′: analytical theory in the approximation of a linear
synchrotron motion
In order to estimate the contribution of Q′′ to the head-tail phase shift, we can follow

exactly the same procedure as the one used in Sub-section 2.1, with the exception that the δ-
dependence of the betatron tune is now given by

Q(δ) = Q+Q′ δ +
1

2
Q′′ δ2 . (33)

Assuming the synchrotron motion to be purely linear, a non-synchronous particle undergoes the
longitudinal motion given by Eq. (1),


z(s; r, φs) = r cos (2πQs s/C + φs)

δ(s; r, φs) = −2πQs

η C
r sin (2πQs s/C + φs) ,

(34)

and, after a transverse kick, will perform betatron oscillations which, turn after turn, can be
described by

y(n; r, φs) = A sin (2nπQ+ θ(n; r, φs)) , (35)

with θ(n; r, φs) a phase shift given by

θ(n; r, φs) =
2π

C

∫ nC

0

ds Q′×δ(s; r, φs) +
1

2
Q′′×δ2(s; r, φs) . (36)

The previous integral can be calculated analytically and, as in Sub-section 2.1, the result can be
expressed in terms of the actual longitudinal coordinates of the particle, i.e. cτ ≡ z(s; r, φs) and
δ ≡ δ(s; r, φs). After some algebra, we get

θ(n; r, φs) =
ω0Q

′

η
τ
(
1 − cos(2nπQs)

)
+
Q′

Qs
δ sin(2nπQs) +

ω0Q
′′

4η
τδ

(
1 − cos(4nπQs)

)
+

π ω2
0 Q

2
s Q

′′

2 η2
τ 2

[
n− sin(4nπQs)

4πQs

]
+
πQ′′

2
δ2

[
n+

sin(4nπQs)

4πQs

]
.

(37)
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Note that the contribution ofQ′′ contains both a component oscillating at twice the synchrotron
frequency and a component increasing linearly with the number of turns. The latter could have
been directly deduced from the following observation. Starting from Eq. (33), unlike Q ′, the
second order chromaticityQ′′ gives a non-zero contribution to the betatron tune when averaged
over a large number of turns. Using Eq. (34), this tune shift can be written as

∆Q =
1

2
Q′′ 〈δ2〉 =

1

4
Q′′

(
2πQs

ηC

)2

r2 =
1

4
Q′′

[
ω2

0 Q
2
s

η2
τ 2 + δ2

]
, (38)

and the corresponding “betatron phase shift” after turn n is

φβ = 2π∆Qn =
π Q′′

2

[
ω2

0 Q
2
s

η2
τ 2 + δ2

]
× n , (39)

to be compared with Eq. (37).
Assuming the longitudinal bunch distribution ρ(τ, δ) to be Gaussian (see Eq. (10)), by com-
bining Eq.’s (35) and (37) and by integrating the obtained result over δ (with the measure
ρ(τ, δ) dδ), the transverse motion of the slice of abscissa τ can be described turn-by-turn by
the following expression:

〈y〉 (τ ;n) = A (τ ;n) sin (2πQn+ φβ (τ ;n))

with




A (τ ;n) =

exp

(
− τ 2

2σ2
τ

)
√

2π στ

exp

(
−α

2(τ ;n)/2

1 + θ2(n)

)
[1 + θ2(n)]1/4

φβ (τ ;n) =
ω0Q

′

η
τ
(
1 − cos(2nπQs)

)
+
π ω2

0 Q
2
s Q

′′

2 η2
τ 2

(
n− sin(4nπQs)

4πQs

)
−[

α2(τ ;n) θ(n)

1 + θ2(n)
− arctan

(
θ(n)

)]
/2

α(τ ;n) =

[
Q′

Qs
sin(2nπQs) +

ω0Q
′′

4η
τ
(
1 − cos(4nπQs)

)]
σδ

θ(n) = π Q′′ σ2
δ

[
n+

sin(4nπQs)

4πQs

]
and σδ =

ω0Qs

|η| στ .

(40)

For Q′′ = 0, the previous relations reproduce exactly Eq.’s (8) and (11) both for the betatron
phase shift φβ(τ ;n) and for the evolution of the signal envelope A(τ ;n) in the presence of a
purely linear chromaticity. On the other hand, for a non vanishing second order chromaticity, the
signal decoheres due to the linear increase with n of the angle θ(n). For instance, the amplitude
A(τ ;n) is reduced by a factor of 2 after n ≡ N 1

2
turns with

θ
(
N 1

2

)
=

√
15 ⇒ N 1

2
=

√
15

π Q′′ σ2
δ

∼ 500 turns , (41)

for an energy spread σδ of 5 × 10−4 (i.e. comparable to the LHC beam energy spread at 450
GeV) and a second order chromaticity as large as 10’000 units (i.e. 10 times higher than its
specification given at injection and based on other considerations [5, p. 13]). However, note that
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Eq. (41) does not contain the contribution which comes from the betatron non-linearities and
which generally dominates. For instance, in the presence of octupolar fields, both the amplitude
detuning and the induced second order chromaticity contribute to the decoherence time of the
signal but this topics is outside the scope of this paper.
Concerning the betatron phase shift φβ(τ ;n), Eq. (40) exhibits three main components:

– the first one, proportional to τ , contains the contribution of Q′ estimated previously in
Eq. (8).

– the second one, proportional to τ 2, was already present in Eq. (37) when describing the
effect of Q′′ on the betatron motion of a single particle. However this contribution to the
head-tail phase-shift can be ignored if the measurements are made for two slices symmet-
rically positioned with respect to the bucket centre (if one neglects the deformation due
to bucket acceleration).

– the third component is the result of the beam filamentation due to Q ′′ (a multi-particle
effect) and is still present in the configuration of two slices symmetrically positioned
with respect to the bucket centre. In this configuration, the head-tail phase shift between
the two slices can be factorised as

∆φsym
β (τ ;n) ≡ φβ(τ ;n) − φβ(−τ ;n) = 2 τ

ω0Q
′

η

(
1 − cos(2nπQs)

)(
1 + ε(n)

)
,

(42)

with ε(n) = −Qs ω
2
0 σ

2
τ

η2
× θ(n)

1 + θ2(n)
× cos2(πnQs) sin(2πnQs) ×Q′′ , (43)

and the angle θ(n) ∝ Q′′ defined in Eq. (40). It is remarkable to see that Eq.’s (8) and (43)
have practically the same form; the only difference lies in the “turn-dependent” calibra-
tion factor 1+ ε(n). However, note that this result has been obtained in the approximation
of a purely linear synchrotron motion and is valid only in the case where the head-tail
phase shift is computed between two slices positioned symmetrically with respect to the
centre of the bucket.

5.2 Application to the LHC and simulation in the presence of both second and third
order chromaticity
The function 1 + ε(n) given in Eq. (43) is shown in Fig. 16 taking the LHC beam pa-

rameters (see Table 3) and assuming a second order chromaticicity of 10’000 units and 50’000
units at injection and at top energy respectively. At injection, such a second order chromaticity
corresponds to an average uncorrected b4 of approximately one unit in the main dipoles, (see [5,
Table 22]), that is 3 times more than the value given in the error table 9901. At top energy, the
main contribution of Q′′ comes from the LHC inner triplets: for the squeezed optics, a second
order chromaticity of 50’000 units can only be reached in the case where ATLAS and CMS
operate with a β∗ of 25 cm (ultimate configuration for protons). On the other hand, Q′′ can
ideally be set to zero by using the four lattice sextupole families foreseen for the LHC (see [9,
Table 2 & 4]). However, in spite of these pessimistic assumptions, the perturbation induced on
the measurement of the head-tail phase-shift does not exceed 10-15 % in Fig. 16. Note also that
the magnitude of this perturbation remains proportional to Q

′′2
(see Eq. (42)), provided that the

head-tail phase shift is computed between two slices symmetrically positioned with respect to
the bunch centre.
As shown in Fig. 17, this analytical approach allows a full understanding of the evolution of the
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Parameter Symbol Units Value

Ring Circumference C m 26658.883
Harmonic number h [1] 35640 (400 MHz)
Momentum compaction α [10−3] 0.347
Energy Es [GeV] 450 7000

Relativistic factor γ [1] 479.605 7460.521
Slippage factor η [10−3] −0.343 −0.347
Peak RF Voltage VRF [MV] 8.0 16.0
Synchrotron tune (at zero
synchrotron amplitude)

Qs [turns] 170 472

Bucket half-height δmax [10−3] 1.00 0.36
r.m.s. bunch length στ [ns] 0.434 0.257
r.m.s. energy spread σδ [10−3] 0.468 0.111

Table 3: Parameters relevant to the LHC RF system, RF voltage and bucket description at injec-
tion and top energy [8, p. 167].
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Figure 16: Perturbation due to Q′′ in the measurement of the head-tail phase shift between
two slices symmetrically positioned around the bucket centre. Calibration factor 1 + ε(n) (see
Eq.’s (42) and (43)) as a function of the turn number n for the LHC beam parameters, assuming
Q′′ = 10′000 units at injection (solid line) and Q′′ = 50′000 units at top energy (dot-dashed
line).
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head-tail phase-shift obtained by tracking for the LHC. When the head-tail phase shift is com-
puted between two slices symmetrically positioned with respect to the bunch centre (Fig.’s 17(a)
and 17(c)), the perturbation induced by Q′′ is small. In this case and as in Paragraph 2.2.2, the
main difference between the tracking results (solid lines) and the analytical estimate derived
in Eq. (8) (dashed lines) lies in a reduction of the modulation frequency of the head-tail phase
shift. This effect is only related to the non-linearities of the synchrotron motion; the peak value
∆φmax

β attained after the first synchrotron half-period is not affected to within a few percent.
In the case where one of the two slices corresponds to the centre of the bucket and the other
is located at the head of the bunch (see Fig.’s 17(b) and 17(d)), the contribution of Q′′ to the
head-tail phase shift is dominant and translates as follows:

– a continuous drift of the head-tail phase-shift. This drift corresponds to the term propor-
tional to Q′′τ 2 contained in the expression describing φβ(τ ;n) in Eq. (40).

– a faster increase of the head-tail phase-shift which stops after turn n ≈ 150 at 450 GeV
(Fig. 17(b)) and n = 500 at 7 TeV (Fig. 17(d)). This effect corresponds to the contribution
of the term arctan(θ(n)) in Eq. (40), which is a monotonous function of n (increasing
or decreasing with n whether Q′′ ≷ 0) and which saturates rapidly when θ(n) > 1, i.e.
n > 1/(πQ′′ σ2

δ ).
To conclude this section, the perturbation induced by a non-vanishing third order chromaticity
Q′′′ has been simulated for the LHC beam in the following two cases:

– LHC beam at 450 GeV with Q′ = 1, Q′′ = 104 and Q′′′ = 106. This third order chro-
maticity corresponds to an uncorrected b5 of 0.2 units in the main dipoles (see [5, Table
23]) or, in other words, to a relative error of 20% in the setting of the decapole spool-piece
correctors MCD (knowing that the expected systematic b5 is around 1 unit).

– LHC beam at 7 TeV withQ′ = 1,Q′′ = 5×104 andQ′′′ = 3.5×107. At top energy, such
a large third order chromaticity can only come from the inner triplets (squeezed optics)
assuming ATLAS and CMS to operate with β∗ = 25 cm (see [9, Table 2 ]).

In both cases, the head-tail phase-shift has been computed between two slices symmetrically
positioned with respect to the centre of the bucket (with τ1,2 ∼ ±στ ). As shown in Fig. 18, the
perturbation induced by Q′′′ is rather small and corresponds to an absolute error of less than
∆Q′ = 0.2 units in the estimate of Q′ via the head-tail technique.
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(a): LHC beam 450 GeV, τ1,2 = ±0.4 ns (b): LHC beam 450 GeV, τ1 = 0 ns, τ2 = 0.4 ns

(c): LHC beam 7 TeV, τ1,2 = ±0.25 ns (d): LHC beam 7 TeV, τ1 = 0 ns, τ2 = 0.5 ns

Figure 17: Evolution of the head-tail phase shift after a transverse kick in the presence of a non-
zero second order chromaticity. Tracking results for the LHC beam (solid lines) assuming a
linear chromaticity of 1 unit and a second order chromaticity of 10’000 units at 450 GeV (Fig.’s
(a) and (b)) and 50’000 units at 7 TeV (Fig.’s (c) and (d)), and comparison with the analytical
estimate given in Eq. (8) (dashed curves). Head-tail phase shift calculated in the following two
cases: (1) the two selected slices are symmetrically positioned with respect to the bunch centre
at τ1,2 ≈ ±στ (Fig.’s (a) and (c)); (2) the first slice corresponds to the centre of bucket (τ1 = 0),
the other one being located at the bunch head at τ2 ≈ στ (Fig.’s (b) and (d)).
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(a): LHC beam 450 GeV, τ1,2 = ±0.4 ns (b): LHC beam 7 TeV, τ1,2 = ±0.25 ns

Figure 18: Evolution of the head-tail phase shift after a transverse kick in the presence of both a
second and third order chromaticity. Tracking results for the LHC beam (solid lines) assuming
Q′ = 1, Q′′ = 10 × 103 (resp. Q′′ = 50 × 103) and Q′′′ = 106 (resp. Q′′ = 35 × 106) at 450
GeV (Fig. (a)) and 7 TeV (Fig. (b)) respectively, and comparison with the analytical estimate
given in Eq. (8) (dashed curves). Head-tail phase shift calculated between two bunch slices
symmetrically positioned with respect to the bunch centre.

6 Other possible perturbations and outstanding issues
Other possible perturbations such as coupling or transverse impedance may also deteri-

orate a priori the precision of the measurement. However, we will see in the next sub-sections
that this should not be the case for the LHC. In fact, the only real limitation to the head-tail
technique comes from the transverse excitation scheme which is currently used. Indeed, the
transverse resolution of the monitor requires large kicks with amplitudes of the order of 1 mm,
which corresponds roughly to 1 σ and 4 σ in the LHC arcs at 450 GeV and 7 TeV respectively.
As a result, during LHC luminosity runs, the use of the head-tail monitor is presently excluded
for the following two reasons: to conserve the transverse emittance of the beam and to exclude
the possibility that one of the secondary collimators becomes a primary. On the other hand, al-
ternative excitation schemes may be envisaged and will be mentioned in the conclusion of this
report.

6.1 Coupling
Let us assume the beam to be excited in the horizontal plane. In the presence of linear

coupling between the two transverse planes, the horizontal signal extracted from the head-tail
monitor can be decomposed in the basis of the two betatron eigen modes:

〈x〉 (τ ;n) = AxI
sin

(
2nπQI + φβI

(τ ;n)
)
+ AxII

sin
(
2nπQII + φβII

(τ ;n)
)
, (44)

with QI,II the two transverse eigen tunes and φβI,II
(τ ;n) the corresponding betatron phase

shifts (given with respect to the slice τ = 0). Written like this, the results obtained in the
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un-coupled case can be directly transposed in the present case concerning the contribution of
the linear and non-linear chromaticities, Q′

I,II , Q′′
I,II . . ., to the head-tail phase-shifts φβI,II

.
Moreover, for a partially coupled machine2), the amplitudeAxII

is proportional to the square of
the perturbation (that is the skew quadrupole field errors of the lattice). More precisely, we have

AxII
/AxI

∝ tan2
(
φ(s0)

)
(45)

where s0 denotes the longitudinal position of the head-tail monitor in the ring and φ(s0) is
the angle of the symplectic 4D-rotation which block-diagonalised the transverse one-turn map
R(s0 → s0+C) (Edwards and Teng method [10]). In other words, the angle φ(s0) characterises
the orientation of the beam ellipse at the location of the monitor. After coupling correction in
the LHC (based on an arc-by-arc minimisation of the difference coupling coefficient followed
by a global correction using the closest tune approach), the angle φ(s) does not exceed a few
degrees in the machine [11]. As a result, coupling, if carefully controlled, should not interfere
with the head-tail technique to measure Q′ in the LHC.

6.2 Head-tail phase shift due to transverse impedance in the SPS at low energy and
extrapolation to the LHC
Dedicated measurements of the head-tail phase shift were performed at the SPS at 26

GeV for a bunch population ranging fromN=1010 toN=8.9×1010 particles. During the mea-
surement, the linear chromaticity was carefully adjusted to zero with the usual radial steering
technique and the RF voltage was set to its standard value at injection, i.e. 0.8 MV correspond-
ing to a synchrotron period of about 1/Qs = 283 turns; the beam was excited in the vertical
plane, data were taken for two portions of bunch spaced by ∆τ = 0.5 ns and the measured r.m.s.
bunch length was around στ = 0.5 ns. As shown in Fig. 19, for N = 8.9 × 1010, the maximum
head-tail phase shift is reached at turn n ≈ 250 and corresponds to ∆φmax

β = −1.2 rad.
Starting from this experimental result, the effect expected at 450 GeV in the LHC can be roughly
estimated in the following way:

– the betatron coherent tune shift due to short-range transverse wake-fields varies as (see
e.g. [13])

∆Q = ∆ωβ/ω0 ∝ N Im [(Z⊥)eff (ωξ)]

γ ω0Qσz
, (46)

with ω0 the angular revolution frequency, γ the Lorentz factor, N the number of par-
ticles per bunch, σz the r.m.s. bunch length, ωξ = Q′ω0/η the chromatic frequency,
η = −0.5158× 10−3 the slippage factor of the SPS at 26 GeV, and (Z⊥)eff (ω) the effec-
tive transverse impedance at the angular frequency ω given by the convolution product
between the total transverse impedance of the ring and the frequency spectrum h0(ω) of
the longitudinal bunch distribution:

(Z⊥)eff (ωξ) =

∫ ∞

−∞
dωZ⊥

1 (ω) h0(ω − ωξ) . (47)

For the year 2001, measurements of single-bunch coherent tune shifts in the SPS [12]
gave

Im
[
(Zy)

sps
eff

]
<∼ 20 MΩ/m (48)

2) “Partially coupled machine” means that the modulus of the difference coupling coefficient remains lower than
the unperturbed fractional tune split Qx − Qy.
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Change of Head-Tail Phase Difference with Intensity
(MESPS-short at 26GeV on the P2 cycle)
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Figure 19: Head-Tail phase difference for zero chromaticity in the presence of transverse
impedance. Measurements performed on a single bunch at 26 GeV in the SPS for varying in-
tensities.

for the vertical plane and for low frequencies (i.e. overlapping with the bunch power
spectrum h0(ω)). At those frequencies, the imaginary part of the transverse effective
impedance in the LHC has been evaluated to [14]

βav Im [(Z⊥)eff ]
<∼ 629.4 MΩ, giving Im [(Z⊥)eff ]

<∼ 8 MΩ/m , (49)

for an average beta function of βav = 80 m. Note that an updated review [15] of the LHC
impedance budget gives around twice less, i.e. 4 MΩ/m, for the total transverse broad-
band impedance of the LHC ring. However, this factor of 2 will be kept in the following
as a safety margin concerning the possible effects that the transverse impedance of the
LHC may have on the accuracy of the head-tail chromaticity measurement technique.

– in the absence of synchrotron motion (i.e. Qs = 0 corresponding to a rigid bunch going
trough a linac), a given particle located say at the head of the bunch will be insensitive
to the transverse machine impedance (for frequencies larger than the bunch to bunch
repetition frequency). In this case, the betatron phase advance of this particle calculated
with respect to that of the particles belonging to the core of the bunch will grow linearly
turn after turn:

∆φ
(Qs=0)
β ∼ −∆Q× n . (50)

On the other hand, for Qs �= 0, the particle considered oscillates at the synchrotron fre-
quency between the head and the tail of the bunch, leading to a modulation of the head-tail
phase-shift. The amplitude ∆φmax

β of this modulation can then be directly deduced from
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the previous equality by replacing n with 1/Qs:

∆φmax
β ∼ ∆Q/Qs ∝ N Im [(Z⊥)eff ]

γ ω0QQsσz
. (51)

Considering the nominal LHC beam parameters given in Table 3, taking 26 and 60 units for the
integer part of the betatron tune in the SPS and in the LHC respectively, and combining Eq.’s
(48), (49) and (51), the head-tail phase shift of 1.2 rad peak measured at 26 GeV in the SPS can
be extrapolated at 450 GeV for the LHC:

∆φmax
β ≈

Scaling of N︷ ︸︸ ︷
(1.1/0.89)×

Scaling of Z⊥︷ ︸︸ ︷
(8/20) ×

∆φmax
β measured in the SPS︷︸︸︷

1.2
(450/26)︸ ︷︷ ︸
Scaling of γ

× (6906.765/26658.883)︸ ︷︷ ︸
Scaling of ω0

× (60/26)︸ ︷︷ ︸
Scaling of Q

× (300/170)︸ ︷︷ ︸
Scaling of Qs

× (0.434/0.5)︸ ︷︷ ︸
Scaling of στ

≈ 0.04 rad .

(52)

As shown in Fig. 17(a), one unit of chromaticity corresponds to a head-tail phase shift of 0.33
rad peak for the LHC at 450 GeV and for two slices spaced by ∆τ = 0.8 ns (to be compared with
the time separation of 0.5 ns considered in Fig. 19). As a result, the perturbation induced by the
transverse impedance of the ring and expressed in terms of effective linear chromaticity should
not exceed ∆Q′ ≈ 0.04/0.33 × 0.8/0.5 ≈ 0.2 units at injection, which is rather acceptable.
Moreover, note that this estimate stands only for nominal LHC bunches and would become
pessimistic in the case where bunches of intermediate intensity would be “sacrificed” (in terms
of beam emittance) for chromaticity measurements during luminosity runs.

7 Conclusions
On the experimental side, both the method and acquired data is now much better under-

stood. The addition of the deconvolution routine into the analysis algorithm to take account
of cable attenuation has significantly reduced the “missing factor” between the head-tail and
traditional chromaticity measurements. Some discrepancy still remains, in particular for high
values of chromaticity, which is probably a result of the 2 GS/s limited sampling rate of the
oscilloscope.
In agreement with the simulations, it has been experimentally verified that the method is ap-
plicable both for stationary and accelerating buckets with the constraint that the measurement
is performed close to and symmetrically about the bunch centre. In addition, dedicated calcu-
lations performed for the LHC have demonstrated the robustness of the head-tail technique in
the presence of off-momentum beta-beating, non-linear chromaticity,Q′′ andQ′′′, or linear cou-
pling (if the latter is arc-by-arc compensated as foreseen in the LHC). Finally, an extrapolation
of the SPS data taken at 26 GeV seems to indicate that, at nominal current, the accuracy of the
head-tail chromaticity technique should practically not be affected by the transverse impedance
of the LHC ring.
For the future, a new system working with sampling rates of up to 10 GS/s will be installed in
the SPS. It is hoped that this increase in the sampling rate along with the continued deconvolu-
tion of the cable response will completely eliminate the residual “missing factor”. In addition,
closed orbit compensation electronics will be added to improve the sensitivity of the acquisi-
tion, and allow the measurement to be made with much smaller excitation amplitudes. Several
alternative excitation schemes will also be investigated, e.g. swept frequency and “so called”
AC-dipole excitation [16], which may also allow the use of head-tail phase shift information
with, hopefully, a better control of the induced emittance growth.
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